Run Code  | API  | Code Wall  | Misc  | Feedback  | Login  | Theme  | Privacy  | Patreon 

Math 10.0 (Added no repeat random numbers)

Language: Layout:
+ ] Show input
Compilation time: 0,39 sec, absolute running time: 5,14 sec, cpu time: 4,75 sec, average memory usage: 33 Mb, average nr of threads: 5 
edit mode |  history  | discussion
\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\vspace{-5mm}\subsection{Exercise 1. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{84}\times6\dfrac{9}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{15}{75}\times\dfrac{24}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{91}\times2\dfrac{4}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{14}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{66}{99}\div1\dfrac{11}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\)
        \item \(\mathmakebox[2.05cm][r]{7\dfrac{6}{12}\times\dfrac{18}{81}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{11}{43}\div\dfrac{30}{86}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{82}{41}\times\dfrac{15}{51}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{17}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{8}{32}\div\dfrac{11}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{95}\times\dfrac{99}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{19}\)
        \item \(\mathmakebox[2.05cm][r]{5\dfrac{4}{12}\div\dfrac{28}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{98}{91}\times\dfrac{13}{26}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{45}\div\dfrac{90}{99}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{9}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{6}{8}\times\dfrac{29}{87}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{21}{63}\times1\dfrac{16}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{10}\div\dfrac{88}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{60}\times2\dfrac{13}{26}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{1}{5}\times\dfrac{28}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{6}{21}\div1\dfrac{9}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{92}{32}\div\dfrac{46}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{64}\div3\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{14}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 2. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{56}\div1\dfrac{6}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{7}{15}\times\dfrac{70}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{18}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{7}\div\dfrac{64}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{7}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{25}\div1\dfrac{15}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{10}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{10}{50}\times2\dfrac{13}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{16}\div\dfrac{12}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{81}\times1\dfrac{21}{33}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{75}{30}\times\dfrac{85}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{76}\div1\dfrac{34}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{80}\div\dfrac{52}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{3}\div\dfrac{21}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{56}\times24\dfrac{2}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)14\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{10}{39}\times1\dfrac{22}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{36}{54}\times2\dfrac{16}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{3}{9}\div1\dfrac{21}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{16}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{91}{24}\times\dfrac{32}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{30}\times\dfrac{21}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{7}{35}\times\dfrac{70}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{8}\div\dfrac{75}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{18}\div1\dfrac{1}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{11}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 3. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{60}\div\dfrac{24}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{81}\times\dfrac{27}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{84}\div1\dfrac{4}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{70}\div\dfrac{66}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{9}\div\dfrac{25}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{5}{80}\div\dfrac{51}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{14}\div\dfrac{72}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{9}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{8}{16}\times\dfrac{27}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{16}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{12}\div2\dfrac{9}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{15}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{15}{21}\times\dfrac{4}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{22}\times16\dfrac{3}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{15}\times\dfrac{54}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)18\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{32}\times\dfrac{36}{95}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{4}\div\dfrac{36}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{36}\div1\dfrac{12}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{82}{50}\times\dfrac{5}{41}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{40}\div\dfrac{3}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{35}\div\dfrac{72}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{10}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{30}\div\dfrac{20}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{11}\div\dfrac{76}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{11}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 4. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{27}\times\dfrac{18}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)17\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{24}\div2\dfrac{1}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{9}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{60}\div2\dfrac{16}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{72}\div6\dfrac{7}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{13}\)
        \item \(\mathmakebox[2.05cm][r]{8\dfrac{2}{6}\div\dfrac{25}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{9}{18}\div\dfrac{36}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{45}{51}\div2\dfrac{10}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{17}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{16}{48}\times2\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{24}\div\dfrac{80}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{63}\div\dfrac{8}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{70}{14}\times\dfrac{63}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{48}\div1\dfrac{2}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{45}\times\dfrac{42}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{15}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{33}\times2\dfrac{8}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{34}{51}\times2\dfrac{12}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{14}\times\dfrac{35}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{24}\div3\dfrac{7}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{99}\div1\dfrac{20}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{7}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{16}\times1\dfrac{6}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{18}\times\dfrac{38}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{10}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 5. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{70}\times2\dfrac{5}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{31}{62}\div\dfrac{36}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{2}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{1}{28}\div2\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{14}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{80}\div1\dfrac{10}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{11}\div\dfrac{76}{88}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{40}\div1\dfrac{20}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{56}\div\dfrac{54}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{74}\div\dfrac{42}{37}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{4}\div\dfrac{88}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{50}\times\dfrac{3}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{66}{55}\div\dfrac{87}{29}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{46}{92}\div4\dfrac{15}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{75}{80}\times1\dfrac{29}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{30}\times\dfrac{6}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{21}{63}\times1\dfrac{18}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{4\dfrac{8}{9}\div2\dfrac{4}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{80}\times\dfrac{30}{46}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{34}{64}\div\dfrac{14}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{55}{99}\times\dfrac{90}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{21}{35}\div1\dfrac{6}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{13}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 6. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{54}\times\dfrac{6}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{32}\times\dfrac{16}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{75}{95}\div\dfrac{25}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{90}\div\dfrac{20}{85}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{98}\div\dfrac{34}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{17}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{6}\times1\dfrac{27}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{60}\times1\dfrac{3}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{66}{99}\times\dfrac{30}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{35}\div\dfrac{56}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{15}\times\dfrac{35}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{21}\times2\dfrac{10}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{19}{40}\times1\dfrac{3}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{94}\times6\dfrac{5}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{12}{24}\div1\dfrac{25}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{55}\times\dfrac{35}{13}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{44}\div1\dfrac{10}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{20}\times\dfrac{19}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{6}\div\dfrac{57}{19}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{54}\div\dfrac{8}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{19}{32}\times1\dfrac{22}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{7}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 7. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{30}\times\dfrac{85}{17}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{99}\div\dfrac{30}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{72}\div\dfrac{17}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{21}\div\dfrac{50}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{3}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{8}{30}\times\dfrac{18}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{45}\div\dfrac{26}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{84}\div1\dfrac{10}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{36}\div1\dfrac{21}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{2}\times\dfrac{13}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{35}{55}\times\dfrac{10}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{90}\times1\dfrac{1}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{35}\times\dfrac{15}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{77}\times1\dfrac{36}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{29}{87}\times\dfrac{81}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{54}\times\dfrac{96}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{17}{68}\times\dfrac{60}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{36}\div\dfrac{34}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{17}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{3}{6}\div\dfrac{12}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{69}{23}\times\dfrac{39}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)13\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{90}\div1\dfrac{2}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 8. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{66}\times1\dfrac{15}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{60}\div\dfrac{4}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{4}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{6}{18}\div3\dfrac{2}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{78}\times1\dfrac{19}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{13}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{32}\div\dfrac{9}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{72}\times\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{27}\div\dfrac{55}{99}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{6}{21}\times\dfrac{63}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{2}\times\dfrac{10}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{95}{60}\times\dfrac{72}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{27}\times\dfrac{20}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{48}\div\dfrac{28}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{88}\div1\dfrac{18}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{96}\div1\dfrac{32}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{17}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{49}{14}\div\dfrac{12}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{85}\div1\dfrac{18}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{17}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{25}\div\dfrac{4}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{27}\div\dfrac{46}{69}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{12}\div\dfrac{18}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{50}\times\dfrac{35}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{11}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 9. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{26}{52}\div\dfrac{27}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{38}{76}\div1\dfrac{12}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{13}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{20}{30}\div\dfrac{64}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{30}\div\dfrac{22}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{81}\times1\dfrac{7}{32}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\)
        \item \(\mathmakebox[2.05cm][r]{4\dfrac{9}{12}\div1\dfrac{28}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{36}\times\dfrac{78}{91}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{14}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{25}\times\dfrac{65}{13}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{98}{28}\div\dfrac{21}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{15}\div\dfrac{20}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{46}\div\dfrac{6}{69}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{88}{63}\times\dfrac{42}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{54}\times\dfrac{81}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)12\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{33}\times2\dfrac{10}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{96}\times\dfrac{28}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{16}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{66}\times5\dfrac{4}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{87}{72}\times\dfrac{36}{29}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{65}\times\dfrac{91}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{12}{20}\div1\dfrac{6}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{33}\div\dfrac{18}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 10. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{40}\div\dfrac{27}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{75}\div\dfrac{24}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{10}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{3}{15}\times\dfrac{5}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{7}{21}\times1\dfrac{15}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{12}\times\dfrac{3}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{16}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{66}\times\dfrac{15}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{36}\times1\dfrac{15}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{32}\times\dfrac{44}{11}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{84}\times1\dfrac{3}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{91}\div\dfrac{24}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{10}\times\dfrac{20}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{2}{4}\div1\dfrac{17}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{8}\div\dfrac{70}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{16}\times1\dfrac{9}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{55}{46}\times\dfrac{92}{88}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{80}{24}\times\dfrac{54}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{36}\div\dfrac{66}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{50}\times1\dfrac{9}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{15}\div\dfrac{57}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{54}\times2\dfrac{11}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{6}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 11. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{34}\times\dfrac{8}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{15}\div\dfrac{31}{93}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{34}\div\dfrac{55}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{17}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{81}{18}\times\dfrac{4}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{72}\div\dfrac{98}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{21}{42}\div\dfrac{90}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{30}\div1\dfrac{32}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{17}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{54}\times1\dfrac{13}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{15}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{13}{20}\times3\dfrac{5}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{2}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{49}{50}\times1\dfrac{9}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{8}\times\dfrac{64}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{11}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{33}\times\dfrac{63}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{11}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{5}{28}\div\dfrac{55}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{15}\times\dfrac{45}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{32}\times\dfrac{56}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{81}\times\dfrac{40}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{25}\div\dfrac{40}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{16}\div1\dfrac{30}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{66}\times\dfrac{55}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{42}\times1\dfrac{12}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{7}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 12. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{12}\div\dfrac{14}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{90}\div\dfrac{26}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{14}\times\dfrac{35}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{84}\div1\dfrac{6}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{27}\div\dfrac{12}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{2}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{24}{72}\div1\dfrac{3}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{28}\div\dfrac{18}{1}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{96}\times\dfrac{35}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{6}\div1\dfrac{6}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{8}{2}\div\dfrac{39}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{84}\times\dfrac{80}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{39}\times\dfrac{27}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{15}{30}\times6\dfrac{8}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{99}{38}\times\dfrac{76}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)11\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{76}\times\dfrac{38}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)8\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{2}\times\dfrac{8}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{11}\div\dfrac{70}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\)
        \item \(\mathmakebox[2.05cm][r]{7\dfrac{1}{3}\times\dfrac{56}{88}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{72}\div\dfrac{70}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{57}\times4\dfrac{6}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{6}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 13. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{52}\div1\dfrac{2}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\)
        \item \(\mathmakebox[2.05cm][r]{14\dfrac{4}{6}\div5\dfrac{4}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{45}\times\dfrac{18}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{95}{57}\div\dfrac{30}{5}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{18}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{7}\times\dfrac{24}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{20}\times\dfrac{80}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{24}\div\dfrac{51}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{84}\div\dfrac{91}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{80}{92}\div1\dfrac{24}{46}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{38}\times1\dfrac{36}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{10}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{16}{32}\div\dfrac{29}{58}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{55}\div\dfrac{99}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{60}\div\dfrac{35}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{10}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{15}\div1\dfrac{40}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{11}{55}\div\dfrac{24}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{19}{38}\times\dfrac{9}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{21}{90}\times\dfrac{72}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{20}\times\dfrac{12}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{16}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{8}{64}\times7\dfrac{4}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{48}\div\dfrac{21}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 14. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{66}\times\dfrac{44}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{72}\times\dfrac{77}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{91}\div1\dfrac{15}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{90}\div\dfrac{30}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{17}{34}\times1\dfrac{11}{33}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{9}{18}\times5\dfrac{6}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)14\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{16}{32}\div1\dfrac{3}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{8}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{48}\div\dfrac{18}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\)
        \item \(\mathmakebox[2.05cm][r]{11\dfrac{1}{3}\div\dfrac{16}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)17\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{60}\div1\dfrac{16}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{88}\div\dfrac{14}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{75}\div\dfrac{52}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{24}\div1\dfrac{5}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{41}{39}\times\dfrac{13}{82}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{21}{35}\times\dfrac{42}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{39}\div\dfrac{96}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{75}\times\dfrac{24}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{60}\times1\dfrac{21}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{12}\)
        \item \(\mathmakebox[2.05cm][r]{10\dfrac{1}{5}\times\dfrac{15}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{22}\times1\dfrac{14}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 15. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}
        \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{88}\div\dfrac{36}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{22}\times\dfrac{7}{49}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{14}\)
        \item \(\mathmakebox[2.05cm][r]{7\dfrac{6}{10}\times2\dfrac{1}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)19\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{14}{35}\times\dfrac{20}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{21}\div\dfrac{54}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{33}\div\dfrac{9}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{76}\div\dfrac{16}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{25}\times\dfrac{80}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{7}{28}\times\dfrac{36}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{16}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{40}\times\dfrac{4}{1}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{78}{50}\times\dfrac{5}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{98}\div\dfrac{26}{49}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{95}\times\dfrac{84}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{19}\)
        \item \(\mathmakebox[2.05cm][r]{5\dfrac{4}{12}\div\dfrac{32}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{6}\div\dfrac{26}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{70}\times1\dfrac{11}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{40}\times\dfrac{10}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{9}\times\dfrac{30}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{36}\times\dfrac{15}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{18}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{80}{62}\div\dfrac{56}{93}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\)
    \end{enumerate}
\end{multicols}

\newpage

\begin{figure}[ht!]
\vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg}
\end{figure}

\vspace{-15mm}\hspace*{-10mm}\begingroup
\centering
\LARGE Fraction Multiplication \& Division (General) \\[0.5em]
\endgroup

\subsection{Exercise 16. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.}
\begin{multicols}{2}
    \begin{enumerate}[label=\arabic*)]
        \setlength\itemsep{1.8em}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\newpage

\newgeometry{
 a4paper,
 total={170mm,257mm},
 left=15mm,
 top=20mm,
 bottom=20mm,
 right=15mm
 }
\fontsize{10pt}{10pt}\selectfont

\section{Fraction Multiplication \& Division (General) Answer Key}
\textbf{p1}

\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{84}\times6\dfrac{9}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{15}{75}\times\dfrac{24}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{91}\times2\dfrac{4}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{14}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{66}{99}\div1\dfrac{11}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\)
        \item \(\mathmakebox[2.05cm][r]{7\dfrac{6}{12}\times\dfrac{18}{81}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{11}{43}\div\dfrac{30}{86}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{82}{41}\times\dfrac{15}{51}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{17}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{8}{32}\div\dfrac{11}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{95}\times\dfrac{99}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{19}\)
        \item \(\mathmakebox[2.05cm][r]{5\dfrac{4}{12}\div\dfrac{28}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{98}{91}\times\dfrac{13}{26}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{45}\div\dfrac{90}{99}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{9}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{6}{8}\times\dfrac{29}{87}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{21}{63}\times1\dfrac{16}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{10}\div\dfrac{88}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{60}\times2\dfrac{13}{26}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{1}{5}\times\dfrac{28}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{6}{21}\div1\dfrac{9}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{92}{32}\div\dfrac{46}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{64}\div3\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{14}\)
    \end{enumerate}
\end{multicols}

\textbf{p2}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{56}\div1\dfrac{6}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{7}{15}\times\dfrac{70}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{18}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{7}\div\dfrac{64}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{7}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{25}\div1\dfrac{15}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{10}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{10}{50}\times2\dfrac{13}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{16}\div\dfrac{12}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{81}\times1\dfrac{21}{33}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{75}{30}\times\dfrac{85}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{76}\div1\dfrac{34}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{80}\div\dfrac{52}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{3}\div\dfrac{21}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{56}\times24\dfrac{2}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)14\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{10}{39}\times1\dfrac{22}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{36}{54}\times2\dfrac{16}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{3}{9}\div1\dfrac{21}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{16}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{91}{24}\times\dfrac{32}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{30}\times\dfrac{21}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{7}{35}\times\dfrac{70}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{8}\div\dfrac{75}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{18}\div1\dfrac{1}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{11}\)
    \end{enumerate}
\end{multicols}

\textbf{p3}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{60}\div\dfrac{24}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{81}\times\dfrac{27}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{84}\div1\dfrac{4}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{70}\div\dfrac{66}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{9}\div\dfrac{25}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{5}{80}\div\dfrac{51}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{14}\div\dfrac{72}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{9}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{8}{16}\times\dfrac{27}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{16}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{12}\div2\dfrac{9}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{15}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{15}{21}\times\dfrac{4}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{22}\times16\dfrac{3}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{15}\times\dfrac{54}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)18\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{32}\times\dfrac{36}{95}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{4}\div\dfrac{36}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{36}\div1\dfrac{12}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{82}{50}\times\dfrac{5}{41}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{40}\div\dfrac{3}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{35}\div\dfrac{72}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{10}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{30}\div\dfrac{20}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{11}\div\dfrac{76}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{11}\)
    \end{enumerate}
\end{multicols}

\textbf{p4}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{27}\times\dfrac{18}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)17\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{24}\div2\dfrac{1}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{9}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{60}\div2\dfrac{16}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{72}\div6\dfrac{7}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{13}\)
        \item \(\mathmakebox[2.05cm][r]{8\dfrac{2}{6}\div\dfrac{25}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{9}{18}\div\dfrac{36}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{45}{51}\div2\dfrac{10}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{17}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{16}{48}\times2\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{24}\div\dfrac{80}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{63}\div\dfrac{8}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{70}{14}\times\dfrac{63}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{48}\div1\dfrac{2}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{45}\times\dfrac{42}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{15}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{33}\times2\dfrac{8}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{34}{51}\times2\dfrac{12}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{14}\times\dfrac{35}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{24}\div3\dfrac{7}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{99}\div1\dfrac{20}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{7}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{16}\times1\dfrac{6}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{18}\times\dfrac{38}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{10}\)
    \end{enumerate}
\end{multicols}

\textbf{p5}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{70}\times2\dfrac{5}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{31}{62}\div\dfrac{36}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{2}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{1}{28}\div2\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{14}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{80}\div1\dfrac{10}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{11}\div\dfrac{76}{88}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{40}\div1\dfrac{20}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{56}\div\dfrac{54}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{74}\div\dfrac{42}{37}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{4}\div\dfrac{88}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{50}\times\dfrac{3}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{66}{55}\div\dfrac{87}{29}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{46}{92}\div4\dfrac{15}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{75}{80}\times1\dfrac{29}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{30}\times\dfrac{6}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{21}{63}\times1\dfrac{18}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{4\dfrac{8}{9}\div2\dfrac{4}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{80}\times\dfrac{30}{46}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{34}{64}\div\dfrac{14}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{55}{99}\times\dfrac{90}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{21}{35}\div1\dfrac{6}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{13}\)
    \end{enumerate}
\end{multicols}

\newpage

\textbf{p6}

\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{54}\times\dfrac{6}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{32}\times\dfrac{16}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{75}{95}\div\dfrac{25}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{90}\div\dfrac{20}{85}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{98}\div\dfrac{34}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{17}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{6}\times1\dfrac{27}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{60}\times1\dfrac{3}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{66}{99}\times\dfrac{30}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{35}\div\dfrac{56}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{15}\times\dfrac{35}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{21}\times2\dfrac{10}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{19}{40}\times1\dfrac{3}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{94}\times6\dfrac{5}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{12}{24}\div1\dfrac{25}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{55}\times\dfrac{35}{13}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{44}\div1\dfrac{10}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{20}\times\dfrac{19}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{6}\div\dfrac{57}{19}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{54}\div\dfrac{8}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{19}{32}\times1\dfrac{22}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{7}\)
    \end{enumerate}
\end{multicols}

\textbf{p7}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{30}\times\dfrac{85}{17}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{99}\div\dfrac{30}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{72}\div\dfrac{17}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{21}\div\dfrac{50}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{3}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{8}{30}\times\dfrac{18}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{45}\div\dfrac{26}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{84}\div1\dfrac{10}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{36}\div1\dfrac{21}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{2}\times\dfrac{13}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{35}{55}\times\dfrac{10}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{90}\times1\dfrac{1}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{35}\times\dfrac{15}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{77}\times1\dfrac{36}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{29}{87}\times\dfrac{81}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{54}\times\dfrac{96}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{17}{68}\times\dfrac{60}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{36}\div\dfrac{34}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{17}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{3}{6}\div\dfrac{12}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{69}{23}\times\dfrac{39}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)13\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{90}\div1\dfrac{2}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\)
    \end{enumerate}
\end{multicols}

\textbf{p8}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{66}\times1\dfrac{15}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{60}\div\dfrac{4}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{4}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{6}{18}\div3\dfrac{2}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{78}\times1\dfrac{19}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{13}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{32}\div\dfrac{9}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{72}\times\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{27}\div\dfrac{55}{99}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{6}{21}\times\dfrac{63}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{2}\times\dfrac{10}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{95}{60}\times\dfrac{72}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{27}\times\dfrac{20}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{48}\div\dfrac{28}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{88}\div1\dfrac{18}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{96}\div1\dfrac{32}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{17}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{49}{14}\div\dfrac{12}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{85}\div1\dfrac{18}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{17}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{25}\div\dfrac{4}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{27}\div\dfrac{46}{69}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{12}\div\dfrac{18}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{50}\times\dfrac{35}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{11}\)
    \end{enumerate}
\end{multicols}

\textbf{p9}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{26}{52}\div\dfrac{27}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{38}{76}\div1\dfrac{12}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{13}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{20}{30}\div\dfrac{64}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{4}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{30}\div\dfrac{22}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{81}\times1\dfrac{7}{32}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\)
        \item \(\mathmakebox[2.05cm][r]{4\dfrac{9}{12}\div1\dfrac{28}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{36}\times\dfrac{78}{91}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{14}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{25}\times\dfrac{65}{13}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{98}{28}\div\dfrac{21}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{15}\div\dfrac{20}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{46}\div\dfrac{6}{69}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{88}{63}\times\dfrac{42}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{54}\times\dfrac{81}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)12\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{33}\times2\dfrac{10}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{96}\times\dfrac{28}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{16}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{66}\times5\dfrac{4}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{87}{72}\times\dfrac{36}{29}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{65}\times\dfrac{91}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{12}{20}\div1\dfrac{6}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{33}\div\dfrac{18}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\)
    \end{enumerate}
\end{multicols}

\textbf{p10}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{40}\div\dfrac{27}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{75}\div\dfrac{24}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{10}\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{3}{15}\times\dfrac{5}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{7}{21}\times1\dfrac{15}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{12}\times\dfrac{3}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{16}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{66}\times\dfrac{15}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{36}\times1\dfrac{15}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{32}\times\dfrac{44}{11}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{84}\times1\dfrac{3}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{91}\div\dfrac{24}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{10}\times\dfrac{20}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\)
        \item \(\mathmakebox[2.05cm][r]{3\dfrac{2}{4}\div1\dfrac{17}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{8}\div\dfrac{70}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{16}\times1\dfrac{9}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{55}{46}\times\dfrac{92}{88}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{80}{24}\times\dfrac{54}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{36}\div\dfrac{66}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{50}\times1\dfrac{9}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{15}\div\dfrac{57}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{54}\times2\dfrac{11}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{6}\)
    \end{enumerate}
\end{multicols}

\newpage

\textbf{p11}

\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{34}\times\dfrac{8}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{15}\div\dfrac{31}{93}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{34}\div\dfrac{55}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{17}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{81}{18}\times\dfrac{4}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{72}\div\dfrac{98}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{21}{42}\div\dfrac{90}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{30}\div1\dfrac{32}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{17}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{54}\times1\dfrac{13}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{15}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{13}{20}\times3\dfrac{5}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{2}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{49}{50}\times1\dfrac{9}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{8}\times\dfrac{64}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{11}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{33}\times\dfrac{63}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{11}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{5}{28}\div\dfrac{55}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{15}\times\dfrac{45}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{32}\times\dfrac{56}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{81}\times\dfrac{40}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{25}\div\dfrac{40}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{16}\div1\dfrac{30}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{66}\times\dfrac{55}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{42}\times1\dfrac{12}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{7}\)
    \end{enumerate}
\end{multicols}

\textbf{p12}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{12}\div\dfrac{14}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{90}\div\dfrac{26}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{14}\times\dfrac{35}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{84}\div1\dfrac{6}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{27}\div\dfrac{12}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{2}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{24}{72}\div1\dfrac{3}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{15}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{28}\div\dfrac{18}{1}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{96}\times\dfrac{35}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{6}\div1\dfrac{6}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{8}{2}\div\dfrac{39}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{84}\times\dfrac{80}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{39}\times\dfrac{27}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{15}{30}\times6\dfrac{8}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{99}{38}\times\dfrac{76}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)11\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{76}\times\dfrac{38}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)8\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{2}\times\dfrac{8}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{11}\div\dfrac{70}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\)
        \item \(\mathmakebox[2.05cm][r]{7\dfrac{1}{3}\times\dfrac{56}{88}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{72}\div\dfrac{70}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{57}\times4\dfrac{6}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{6}\)
    \end{enumerate}
\end{multicols}

\textbf{p13}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{52}\div1\dfrac{2}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\)
        \item \(\mathmakebox[2.05cm][r]{14\dfrac{4}{6}\div5\dfrac{4}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{45}\times\dfrac{18}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{95}{57}\div\dfrac{30}{5}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{18}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{7}\times\dfrac{24}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{20}\times\dfrac{80}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{24}\div\dfrac{51}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{84}\div\dfrac{91}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{80}{92}\div1\dfrac{24}{46}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{38}\times1\dfrac{36}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{10}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{16}{32}\div\dfrac{29}{58}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{55}\div\dfrac{99}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{60}\div\dfrac{35}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{10}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{15}\div1\dfrac{40}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{11}{55}\div\dfrac{24}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{5}\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{19}{38}\times\dfrac{9}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{21}{90}\times\dfrac{72}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{20}\times\dfrac{12}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{16}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{8}{64}\times7\dfrac{4}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{48}\div\dfrac{21}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
    \end{enumerate}
\end{multicols}

\textbf{p14}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{66}\times\dfrac{44}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{4}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{72}\times\dfrac{77}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{12}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{91}\div1\dfrac{15}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{90}\div\dfrac{30}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{17}{34}\times1\dfrac{11}{33}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{9}{18}\times5\dfrac{6}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)14\)
        \item \(\mathmakebox[2.05cm][r]{2\dfrac{16}{32}\div1\dfrac{3}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{8}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{48}\div\dfrac{18}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\)
        \item \(\mathmakebox[2.05cm][r]{11\dfrac{1}{3}\div\dfrac{16}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)17\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{60}\div1\dfrac{16}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{88}\div\dfrac{14}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{11}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{75}\div\dfrac{52}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{24}\div1\dfrac{5}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{41}{39}\times\dfrac{13}{82}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{21}{35}\times\dfrac{42}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{39}\div\dfrac{96}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{75}\times\dfrac{24}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{60}\times1\dfrac{21}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{12}\)
        \item \(\mathmakebox[2.05cm][r]{10\dfrac{1}{5}\times\dfrac{15}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{22}\times1\dfrac{14}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\)
    \end{enumerate}
\end{multicols}

\textbf{p15}
\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]
        \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{88}\div\dfrac{36}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{8}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{22}\times\dfrac{7}{49}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{14}\)
        \item \(\mathmakebox[2.05cm][r]{7\dfrac{6}{10}\times2\dfrac{1}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)19\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{14}{35}\times\dfrac{20}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{21}\div\dfrac{54}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{33}\div\dfrac{9}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{9}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{76}\div\dfrac{16}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{19}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{25}\times\dfrac{80}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{7}{28}\times\dfrac{36}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{16}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{40}\times\dfrac{4}{1}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{2}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{78}{50}\times\dfrac{5}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{98}\div\dfrac{26}{49}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{13}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{95}\times\dfrac{84}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{19}\)
        \item \(\mathmakebox[2.05cm][r]{5\dfrac{4}{12}\div\dfrac{32}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{3}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{6}\div\dfrac{26}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{70}\times1\dfrac{11}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{40}\times\dfrac{10}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{9}\times\dfrac{30}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\)
        \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{36}\times\dfrac{15}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{18}\)
        \item \(\mathmakebox[2.05cm][r]{\dfrac{80}{62}\div\dfrac{56}{93}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\)
    \end{enumerate}
\end{multicols}

\newpage

\textbf{p16}

\begin{multicols}{5}
    \begin{enumerate}[label=\arabic*)]

    
                
λ
.NET NoSQL database for rapid development