Run Code | API | Code Wall | Misc | Feedback | Login | Theme | Privacy | Patreon |
Polynomial RegressionClasses ‘nfnGroupedData’, ‘nfGroupedData’, ‘groupedData’ and 'data.frame': 578 obs. of 4 variables: $ weight: num 42 51 59 64 76 93 106 125 149 171 ... $ Time : num 0 2 4 6 8 10 12 14 16 18 ... $ Chick : Ord.factor w/ 50 levels "18"<"16"<"15"<..: 15 15 15 15 15 15 15 15 15 15 ... $ Diet : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 1 1 1 1 ... - attr(*, "formula")=Class 'formula' language weight ~ Time | Chick .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> - attr(*, "outer")=Class 'formula' language ~Diet .. ..- attr(*, ".Environment")=<environment: R_EmptyEnv> - attr(*, "labels")=List of 2 ..$ x: chr "Time" ..$ y: chr "Body weight" - attr(*, "units")=List of 2 ..$ x: chr "(days)" ..$ y: chr "(gm)" weight Time Chick Diet 1 42 0 1 1 2 51 2 1 1 3 59 4 1 1 4 64 6 1 1 5 76 8 1 1 6 93 10 1 1 Call: lm(formula = weight ~ Time) Residuals: Min 1Q Median 3Q Max -78.609 -15.677 -0.324 11.069 130.391 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 30.9310 4.0948 7.554 1.15e-12 *** Time 6.8418 0.3286 20.822 < 2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 32.85 on 218 degrees of freedom Multiple R-squared: 0.6654, Adjusted R-squared: 0.6639 F-statistic: 433.5 on 1 and 218 DF, p-value: < 2.2e-16 Call: lm(formula = weight ~ Time + I(Time^2)) Residuals: Min 1Q Median 3Q Max -85.702 -12.891 1.099 9.922 123.298 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 38.36142 5.50191 6.972 3.7e-11 *** Time 4.47324 1.22553 3.650 0.000329 *** I(Time^2) 0.11202 0.05587 2.005 0.046198 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 32.62 on 217 degrees of freedom Multiple R-squared: 0.6715, Adjusted R-squared: 0.6685 F-statistic: 221.8 on 2 and 217 DF, p-value: < 2.2e-16 Call: lm(formula = weight ~ Time + I(Time^2) + I(Time^3)) Residuals: Min 1Q Median 3Q Max -82.186 -12.340 0.015 9.432 126.814 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 41.98477 6.43884 6.521 4.88e-10 *** Time 1.69828 2.84194 0.598 0.551 I(Time^2) 0.46066 0.32698 1.409 0.160 I(Time^3) -0.01108 0.01024 -1.082 0.280 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 32.61 on 216 degrees of freedom Multiple R-squared: 0.6733, Adjusted R-squared: 0.6687 F-statistic: 148.4 on 3 and 216 DF, p-value: < 2.2e-16 Analysis of Variance Table Model 1: weight ~ Time Model 2: weight ~ Time + I(Time^2) Model 3: weight ~ Time + I(Time^2) + I(Time^3) Res.Df RSS Df Sum of Sq F Pr(>F) 1 218 235212 2 217 230933 1 4278.4 4.0235 0.04612 * 3 216 229688 1 1245.2 1.1710 0.28040 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 |
λ
.NET NoSQL database for rapid development
|