Run Code | API | Code Wall | Misc | Feedback | Login | Theme | Privacy | Patreon |
Math 9.64 (Edited makeMixedNum)\begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \vspace{-5mm}\subsection{Exercise 1. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{40}\div1\dfrac{8}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{42}\times22\dfrac{2}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{33}\div\dfrac{30}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{11}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{2}{4}\div\dfrac{15}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{80}\times\dfrac{25}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)5\) \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{56}\div\dfrac{77}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{14}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{76}\div2\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{66}{99}\div1\dfrac{24}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{68}{85}\times\dfrac{20}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{23}\times\dfrac{23}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{2}\div\dfrac{72}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{9}{51}\times2\dfrac{1}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{15}\times\dfrac{10}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{55}\times2\dfrac{5}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{11}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{6}{7}\div1\dfrac{8}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{7}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{9}{45}\div\dfrac{12}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)11\) \item \(\mathmakebox[2.05cm][r]{\dfrac{3}{38}\times\dfrac{22}{11}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{38}\div\dfrac{4}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{26}{52}\div\dfrac{30}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{10}\) \item \(\mathmakebox[2.05cm][r]{12\dfrac{3}{6}\times\dfrac{14}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 2. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{78}\div\dfrac{28}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{13}\) \item \(\mathmakebox[2.05cm][r]{9\dfrac{3}{9}\times1\dfrac{10}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)12\) \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{40}\times\dfrac{24}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{20}\div\dfrac{32}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{55}{15}\div\dfrac{6}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{2}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{5}{90}\times\dfrac{65}{95}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{14}{8}\div\dfrac{78}{26}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{36}\div\dfrac{12}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{88}\div1\dfrac{24}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{10}\times\dfrac{88}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{20}\div\dfrac{10}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{64}\div1\dfrac{12}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{4}\times\dfrac{38}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{21}\times1\dfrac{22}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{98}\times\dfrac{9}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{88}{24}\times\dfrac{25}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{66}\times2\dfrac{6}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{15}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{33}{63}\div3\dfrac{9}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{25}{50}\times6\dfrac{4}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{48}\times1\dfrac{16}{68}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{17}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 3. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{87}\div\dfrac{48}{58}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{40}\times1\dfrac{5}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{60}\div\dfrac{14}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{52}\div\dfrac{42}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{60}\times1\dfrac{11}{33}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{54}\times\dfrac{63}{85}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{57}\times\dfrac{40}{68}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{19}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{12}{20}\times2\dfrac{4}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)9\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{24}\times2\dfrac{12}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{30}{66}\div1\dfrac{30}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{70}\div\dfrac{63}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{94}\times\dfrac{47}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{11}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{11}{31}\times1\dfrac{39}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{8}{78}\div\dfrac{4}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{32}\div\dfrac{84}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{14}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{54}\div1\dfrac{5}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{25}{30}\times\dfrac{17}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{12}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{14}\times\dfrac{9}{81}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{4}\times1\dfrac{8}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{11}\div\dfrac{96}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 4. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{36}\times\dfrac{6}{76}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{32}\div\dfrac{72}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{15}{23}\times\dfrac{46}{76}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\) \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{78}\times1\dfrac{15}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{13}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{8}{42}\div\dfrac{46}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{2}{10}\div1\dfrac{2}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{5}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{41}\times10\dfrac{2}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)11\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{7}\times\dfrac{35}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)5\) \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{12}\times\dfrac{90}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{26}\times\dfrac{48}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{27}\times\dfrac{54}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{57}\div1\dfrac{22}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{92}\times1\dfrac{40}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{30}{36}\div\dfrac{55}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{18}\div\dfrac{12}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{66}\div1\dfrac{18}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{54}\div1\dfrac{14}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{20}{30}\div5\dfrac{10}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{15}\) \item \(\mathmakebox[2.05cm][r]{5\dfrac{1}{5}\div\dfrac{8}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \item \(\mathmakebox[2.05cm][r]{5\dfrac{4}{6}\div3\dfrac{6}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{10}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 5. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{14}{21}\div\dfrac{6}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{3}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{3}{19}\div\dfrac{16}{76}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)15\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{26}\div\dfrac{56}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{86}\times\dfrac{43}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{19}\) \item \(\mathmakebox[2.05cm][r]{11\dfrac{2}{5}\times\dfrac{35}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{39}\div\dfrac{70}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{8}{90}\times\dfrac{60}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{34}\div1\dfrac{20}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{48}\times\dfrac{51}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{14}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{9}{15}\times1\dfrac{30}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{49}\times\dfrac{98}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{7}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{9}{10}\times\dfrac{25}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{12}\div\dfrac{63}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{13}{27}\times\dfrac{90}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{44}\div\dfrac{51}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{17}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{1}{7}\div1\dfrac{6}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{54}\div\dfrac{52}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{25}{80}\times\dfrac{10}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{6}{18}\times\dfrac{63}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{16}{64}\div\dfrac{21}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 6. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{65}{66}\times\dfrac{44}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{85}{56}\times\dfrac{56}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{16}\div4\dfrac{11}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{5}\times\dfrac{75}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{10}\div1\dfrac{28}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{17}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{24}\times14\dfrac{1}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)19\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{4}\div\dfrac{30}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{6}\div1\dfrac{7}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{54}\div1\dfrac{10}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{13}{5}\div\dfrac{32}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{16}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{64}\div4\dfrac{9}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{16}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{1}{5}\times\dfrac{25}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{5}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{3}{6}\times2\dfrac{4}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{99}\times\dfrac{90}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{11}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{6}{8}\div\dfrac{69}{92}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{26}\times\dfrac{30}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{78}{26}\div\dfrac{76}{95}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{56}\times1\dfrac{3}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{42}\div\dfrac{48}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{14}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{6}\times\dfrac{25}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 7. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{27}\div\dfrac{36}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{14}\div\dfrac{14}{49}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{4}{14}\div1\dfrac{44}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{16}\div2\dfrac{2}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{30}\div\dfrac{21}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{7}{35}\times\dfrac{30}{32}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{7}\times\dfrac{42}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{80}\div\dfrac{78}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{66}\div\dfrac{12}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{94}\div\dfrac{26}{94}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{30}\times1\dfrac{40}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{80}\div\dfrac{2}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{3}{10}\times\dfrac{25}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{14}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{40}\div\dfrac{21}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{50}\div1\dfrac{24}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{64}\div\dfrac{52}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{96}\times\dfrac{93}{62}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{9}\times\dfrac{30}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{48}\times\dfrac{20}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{14}\div\dfrac{50}{85}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{7}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 8. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{32}\times2\dfrac{18}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{14}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{54}\div1\dfrac{35}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{16}\times\dfrac{72}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{28}\times\dfrac{14}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{29}{35}\div\dfrac{16}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{22}\div\dfrac{80}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{16}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{10}{52}\times\dfrac{14}{31}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{65}{55}\times\dfrac{25}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{11}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{2}{12}\div\dfrac{65}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{99}\times\dfrac{6}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{36}\div\dfrac{20}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{24}\times\dfrac{72}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{45}\times\dfrac{90}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{18}\times\dfrac{46}{69}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{4}\div2\dfrac{2}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{11}\times\dfrac{22}{13}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{54}\times1\dfrac{8}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{47}\times\dfrac{94}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{66}\times3\dfrac{9}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{5}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{11}\times1\dfrac{9}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{8}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 9. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{29}\times\dfrac{29}{76}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{99}\times\dfrac{60}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{46}{92}\div1\dfrac{8}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{52}\div\dfrac{8}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{30}\div\dfrac{18}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{14}{18}\div3\dfrac{3}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{34}{21}\div\dfrac{48}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{20}\div\dfrac{40}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{76}\div1\dfrac{16}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{42}\div\dfrac{39}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{10}\times\dfrac{5}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{60}\times\dfrac{15}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{34}\times\dfrac{17}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{21}\div\dfrac{30}{99}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{14}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{85}{25}\times\dfrac{90}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)9\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{19}{21}\times\dfrac{12}{82}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{20}\times1\dfrac{7}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{29}{58}\times2\dfrac{16}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{3}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{10}{25}\times\dfrac{35}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{66}\div\dfrac{6}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{11}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 10. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{36}\div\dfrac{8}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{65}{25}\times\dfrac{25}{95}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{14}\times\dfrac{8}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{34}{51}\times\dfrac{33}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{99}{96}\times\dfrac{48}{81}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{36}\div\dfrac{16}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{90}\div\dfrac{14}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{10}\div\dfrac{88}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{5}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{90}\times\dfrac{30}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{21}\div1\dfrac{12}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{5}{22}\div1\dfrac{33}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{72}\times1\dfrac{14}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{19}{57}\times\dfrac{24}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{48}\times2\dfrac{12}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{78}{66}\div\dfrac{91}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{96}\div\dfrac{7}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{40}\div1\dfrac{24}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{54}\div\dfrac{10}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{54}\div\dfrac{10}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{18}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{26}\times\dfrac{10}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{13}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 11. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{6}\times\dfrac{2}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{9}\) \item \(\mathmakebox[2.05cm][r]{5\dfrac{6}{8}\div1\dfrac{40}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{26}{52}\times2\dfrac{6}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{2}\) \item \(\mathmakebox[2.05cm][r]{16\dfrac{2}{6}\times\dfrac{48}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)8\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{44}\times\dfrac{32}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{15}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{8}\times\dfrac{40}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{72}\times\dfrac{63}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{39}{54}\div\dfrac{64}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{12}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{6}\div\dfrac{35}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{15}\div\dfrac{28}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{21}\div\dfrac{64}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{12}\times\dfrac{39}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{36}\div\dfrac{90}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{85}\times\dfrac{40}{32}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{23}\times\dfrac{69}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\) \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{32}\div1\dfrac{35}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{92}\times\dfrac{69}{5}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{8}{14}\div5\dfrac{10}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{30}\times10\dfrac{2}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{9}\div\dfrac{48}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{3}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 12. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{44}\times\dfrac{88}{33}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\) \item \(\mathmakebox[2.05cm][r]{\dfrac{55}{22}\div\dfrac{25}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{5}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{6}{11}\times2\dfrac{7}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{11}{16}\times1\dfrac{22}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{3}{55}\times23\dfrac{1}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{11}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{17}{19}\times1\dfrac{23}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{21}{46}\times1\dfrac{27}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{80}\times2\dfrac{8}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{40}\div\dfrac{45}{5}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{12}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{2}{44}\div1\dfrac{5}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{36}\div\dfrac{9}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{72}\times1\dfrac{10}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{25}{35}\times\dfrac{7}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{24}\times\dfrac{44}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{7}{13}\times1\dfrac{3}{49}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{28}\div\dfrac{16}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{9}{23}\div\dfrac{44}{46}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{17}{90}\times\dfrac{60}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{94}\times1\dfrac{30}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{16}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{56}\times1\dfrac{25}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{8}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 13. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{99}{3}\div\dfrac{33}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)8\) \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{78}\div\dfrac{20}{26}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{7}{42}\times\dfrac{72}{11}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{54}\div1\dfrac{8}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{85}\div2\dfrac{7}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{17}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{2}{4}\div\dfrac{28}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)9\) \item \(\mathmakebox[2.05cm][r]{\dfrac{57}{91}\times\dfrac{35}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{48}\times\dfrac{54}{81}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{10}{20}\div1\dfrac{14}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\) \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{90}\div\dfrac{12}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\) \item \(\mathmakebox[2.05cm][r]{\dfrac{70}{45}\div\dfrac{80}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{32}\div1\dfrac{14}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{80}\times1\dfrac{9}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{3}{12}\div\dfrac{42}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{54}\div\dfrac{10}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{51}\div\dfrac{48}{51}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{16}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{3}{6}\div\dfrac{25}{85}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{8}\div\dfrac{54}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\) \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{68}\div\dfrac{64}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{17}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{2}{8}\div\dfrac{19}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 14. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{18}\div4\dfrac{2}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{74}\div\dfrac{23}{74}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{24}\times1\dfrac{8}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{98}{8}\times\dfrac{38}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{42}\times\dfrac{87}{58}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{7}\) \item \(\mathmakebox[2.05cm][r]{5\dfrac{6}{12}\times\dfrac{63}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{63}\times\dfrac{14}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{12}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{70}{98}\div4\dfrac{2}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{6}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{95}\times\dfrac{90}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)12\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{78}\div1\dfrac{18}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{4}\div\dfrac{54}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{37}\times\dfrac{74}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{1}{6}\div1\dfrac{6}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{15}\times\dfrac{51}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)17\) \item \(\mathmakebox[2.05cm][r]{\dfrac{13}{26}\div\dfrac{24}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{21}\div\dfrac{70}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{15}{39}\div4\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{16}{64}\times1\dfrac{7}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{88}{99}\times2\dfrac{4}{32}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{18}\times\dfrac{36}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{12}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 15. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} \item \(\mathmakebox[2.05cm][r]{\dfrac{95}{16}\div\dfrac{95}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{4}{10}\times2\dfrac{5}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{21}\times9\dfrac{8}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{64}\times1\dfrac{12}{68}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{33}\times\dfrac{15}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{40}\div2\dfrac{16}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{12}\div1\dfrac{8}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{64}\times\dfrac{26}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{16}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{13}{45}\times\dfrac{21}{91}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{36}\div\dfrac{2}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{23}{26}\times\dfrac{10}{23}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{15}\div\dfrac{66}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{40}\times\dfrac{8}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\) \item \(\mathmakebox[2.05cm][r]{11\dfrac{4}{8}\div9\dfrac{2}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{6}\div\dfrac{52}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)8\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{12}\div\dfrac{18}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{36}{45}\times\dfrac{80}{99}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{57}\div1\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{19}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{24}{56}\times1\dfrac{6}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{93}\div\dfrac{56}{62}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\) \end{enumerate} \end{multicols} \newpage \begin{figure}[ht!] \vspace{-23mm}\hspace*{-23mm}\includegraphics[scale=0.9]{Logo.jpg} \end{figure} \vspace{-15mm}\hspace*{-10mm}\begingroup \centering \LARGE Fraction Multiplication \& Division (General) \\[0.5em] \endgroup \subsection{Exercise 16. Leave your +/- answers in simplest Mixed Number form and $\times/\div$ in Improper Fraction form unless otherwise instructed.} \begin{multicols}{2} \begin{enumerate}[label=\arabic*)] \setlength\itemsep{1.8em} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \newpage \newgeometry{ a4paper, total={170mm,257mm}, left=15mm, top=20mm, bottom=20mm, right=15mm } \fontsize{10pt}{10pt}\selectfont \section{Fraction Multiplication \& Division (General) Answer Key} \textbf{p1} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{40}\div1\dfrac{8}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{42}\times22\dfrac{2}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{33}\div\dfrac{30}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{11}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{2}{4}\div\dfrac{15}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{80}\times\dfrac{25}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)5\) \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{56}\div\dfrac{77}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{14}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{76}\div2\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{66}{99}\div1\dfrac{24}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{68}{85}\times\dfrac{20}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{23}\times\dfrac{23}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{2}\div\dfrac{72}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{9}{51}\times2\dfrac{1}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{15}\times\dfrac{10}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{55}\times2\dfrac{5}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{11}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{6}{7}\div1\dfrac{8}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{7}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{9}{45}\div\dfrac{12}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)11\) \item \(\mathmakebox[2.05cm][r]{\dfrac{3}{38}\times\dfrac{22}{11}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{38}\div\dfrac{4}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{26}{52}\div\dfrac{30}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{10}\) \item \(\mathmakebox[2.05cm][r]{12\dfrac{3}{6}\times\dfrac{14}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\) \end{enumerate} \end{multicols} \textbf{p2} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{78}\div\dfrac{28}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{13}\) \item \(\mathmakebox[2.05cm][r]{9\dfrac{3}{9}\times1\dfrac{10}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)12\) \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{40}\times\dfrac{24}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{22}{20}\div\dfrac{32}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{55}{15}\div\dfrac{6}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{2}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{5}{90}\times\dfrac{65}{95}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{14}{8}\div\dfrac{78}{26}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{36}\div\dfrac{12}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{88}\div1\dfrac{24}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{10}\times\dfrac{88}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{20}\div\dfrac{10}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{64}\div1\dfrac{12}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{4}\times\dfrac{38}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{21}\times1\dfrac{22}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{98}\times\dfrac{9}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{88}{24}\times\dfrac{25}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{66}\times2\dfrac{6}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{15}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{33}{63}\div3\dfrac{9}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{25}{50}\times6\dfrac{4}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{48}\times1\dfrac{16}{68}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{17}\) \end{enumerate} \end{multicols} \textbf{p3} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{87}\div\dfrac{48}{58}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{40}\times1\dfrac{5}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{60}\div\dfrac{14}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{52}\div\dfrac{42}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{60}\times1\dfrac{11}{33}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{54}\times\dfrac{63}{85}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{51}{57}\times\dfrac{40}{68}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{19}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{12}{20}\times2\dfrac{4}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)9\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{12}{24}\times2\dfrac{12}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{30}{66}\div1\dfrac{30}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{70}\div\dfrac{63}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{94}\times\dfrac{47}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{11}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{11}{31}\times1\dfrac{39}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{8}{78}\div\dfrac{4}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{32}\div\dfrac{84}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{14}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{54}\div1\dfrac{5}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{25}{30}\times\dfrac{17}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{12}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{14}\times\dfrac{9}{81}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{4}\times1\dfrac{8}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{11}\div\dfrac{96}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\) \end{enumerate} \end{multicols} \textbf{p4} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{36}\times\dfrac{6}{76}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{32}\div\dfrac{72}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{15}{23}\times\dfrac{46}{76}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\) \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{78}\times1\dfrac{15}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{13}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{8}{42}\div\dfrac{46}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{2}{10}\div1\dfrac{2}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{5}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{41}\times10\dfrac{2}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)11\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{7}\times\dfrac{35}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)5\) \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{12}\times\dfrac{90}{27}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{26}\times\dfrac{48}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{27}\times\dfrac{54}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{57}\div1\dfrac{22}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{92}\times1\dfrac{40}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{30}{36}\div\dfrac{55}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{18}\div\dfrac{12}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{66}\div1\dfrac{18}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{54}\div1\dfrac{14}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{20}{30}\div5\dfrac{10}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{15}\) \item \(\mathmakebox[2.05cm][r]{5\dfrac{1}{5}\div\dfrac{8}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \item \(\mathmakebox[2.05cm][r]{5\dfrac{4}{6}\div3\dfrac{6}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{10}\) \end{enumerate} \end{multicols} \textbf{p5} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{14}{21}\div\dfrac{6}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{3}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{3}{19}\div\dfrac{16}{76}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)15\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{26}\div\dfrac{56}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{86}\times\dfrac{43}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{19}\) \item \(\mathmakebox[2.05cm][r]{11\dfrac{2}{5}\times\dfrac{35}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{39}\div\dfrac{70}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{8}{90}\times\dfrac{60}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{34}\div1\dfrac{20}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{48}\times\dfrac{51}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{14}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{9}{15}\times1\dfrac{30}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{49}\times\dfrac{98}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{7}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{9}{10}\times\dfrac{25}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{12}\div\dfrac{63}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{13}{27}\times\dfrac{90}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{84}{44}\div\dfrac{51}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{17}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{1}{7}\div1\dfrac{6}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{54}\div\dfrac{52}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{25}{80}\times\dfrac{10}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{6}{18}\times\dfrac{63}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{16}{64}\div\dfrac{21}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \end{enumerate} \end{multicols} \newpage \textbf{p6} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{65}{66}\times\dfrac{44}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{85}{56}\times\dfrac{56}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{16}\div4\dfrac{11}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{5}\times\dfrac{75}{57}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{10}\div1\dfrac{28}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{17}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{24}\times14\dfrac{1}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)19\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{4}\div\dfrac{30}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{6}\div1\dfrac{7}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{54}\div1\dfrac{10}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{13}{5}\div\dfrac{32}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{16}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{64}\div4\dfrac{9}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{16}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{1}{5}\times\dfrac{25}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{5}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{3}{6}\times2\dfrac{4}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{99}\times\dfrac{90}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{11}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{6}{8}\div\dfrac{69}{92}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{26}\times\dfrac{30}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{10}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{78}{26}\div\dfrac{76}{95}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{56}\times1\dfrac{3}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{42}\div\dfrac{48}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{14}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{6}\times\dfrac{25}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{4}\) \end{enumerate} \end{multicols} \textbf{p7} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{27}\div\dfrac{36}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{40}{14}\div\dfrac{14}{49}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{4}{14}\div1\dfrac{44}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{16}\div2\dfrac{2}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{30}\div\dfrac{21}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{5}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{7}{35}\times\dfrac{30}{32}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{7}\times\dfrac{42}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{80}\div\dfrac{78}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{66}\div\dfrac{12}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{94}\div\dfrac{26}{94}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{18}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{30}\times1\dfrac{40}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{80}\div\dfrac{2}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{3}{10}\times\dfrac{25}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{14}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{10}{40}\div\dfrac{21}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{50}\div1\dfrac{24}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{64}\div\dfrac{52}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{96}\times\dfrac{93}{62}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{9}\times\dfrac{30}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{48}\times\dfrac{20}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{20}{14}\div\dfrac{50}{85}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{7}\) \end{enumerate} \end{multicols} \textbf{p8} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{32}\times2\dfrac{18}{21}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{14}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{54}\div1\dfrac{35}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{10}{16}\times\dfrac{72}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{28}\times\dfrac{14}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{29}{35}\div\dfrac{16}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{22}\div\dfrac{80}{55}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{16}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{10}{52}\times\dfrac{14}{31}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{65}{55}\times\dfrac{25}{65}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{11}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{2}{12}\div\dfrac{65}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{99}\times\dfrac{6}{2}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{36}\div\dfrac{20}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{24}\times\dfrac{72}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{45}\times\dfrac{90}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)16\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{18}\times\dfrac{46}{69}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{4}\div2\dfrac{2}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{11}\times\dfrac{22}{13}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{54}\times1\dfrac{8}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{47}\times\dfrac{94}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{66}\times3\dfrac{9}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{5}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{4}{11}\times1\dfrac{9}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{8}\) \end{enumerate} \end{multicols} \textbf{p9} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{29}\times\dfrac{29}{76}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{99}\times\dfrac{60}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{46}{92}\div1\dfrac{8}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{52}\div\dfrac{8}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{30}\div\dfrac{18}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{14}{18}\div3\dfrac{3}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{34}{21}\div\dfrac{48}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{20}\div\dfrac{40}{24}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{76}\div1\dfrac{16}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{42}\div\dfrac{39}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{10}\times\dfrac{5}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{42}{60}\times\dfrac{15}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{34}\times\dfrac{17}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{12}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{21}\div\dfrac{30}{99}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{14}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{85}{25}\times\dfrac{90}{34}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)9\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{19}{21}\times\dfrac{12}{82}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{20}\times1\dfrac{7}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{29}{58}\times2\dfrac{16}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{3}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{10}{25}\times\dfrac{35}{63}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{66}\div\dfrac{6}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{11}\) \end{enumerate} \end{multicols} \textbf{p10} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{36}\div\dfrac{8}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{65}{25}\times\dfrac{25}{95}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{19}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{14}\times\dfrac{8}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{34}{51}\times\dfrac{33}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{99}{96}\times\dfrac{48}{81}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{36}\div\dfrac{16}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{90}\div\dfrac{14}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{10}\div\dfrac{88}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{5}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{90}\times\dfrac{30}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{9}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{18}{21}\div1\dfrac{12}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{5}{22}\div1\dfrac{33}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{54}{72}\times1\dfrac{14}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{10}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{19}{57}\times\dfrac{24}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{48}\times2\dfrac{12}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{78}{66}\div\dfrac{91}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{96}\div\dfrac{7}{54}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{40}\div1\dfrac{24}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{54}\div\dfrac{10}{9}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{54}\div\dfrac{10}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{18}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{26}\times\dfrac{10}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{13}\) \end{enumerate} \end{multicols} \newpage \textbf{p11} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{6}\times\dfrac{2}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{9}\) \item \(\mathmakebox[2.05cm][r]{5\dfrac{6}{8}\div1\dfrac{40}{52}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{4}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{26}{52}\times2\dfrac{6}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{2}\) \item \(\mathmakebox[2.05cm][r]{16\dfrac{2}{6}\times\dfrac{48}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)8\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{44}\times\dfrac{32}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{15}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{6}{8}\times\dfrac{40}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{2}{72}\times\dfrac{63}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{39}{54}\div\dfrac{64}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{12}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{45}{6}\div\dfrac{35}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{63}{15}\div\dfrac{28}{30}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{21}\div\dfrac{64}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{12}\times\dfrac{39}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{36}\div\dfrac{90}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{85}\times\dfrac{40}{32}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{23}\times\dfrac{69}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\) \item \(\mathmakebox[2.05cm][r]{\dfrac{28}{32}\div1\dfrac{35}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{92}\times\dfrac{69}{5}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{2}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{8}{14}\div5\dfrac{10}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{15}{30}\times10\dfrac{2}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{24}{9}\div\dfrac{48}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{3}\) \end{enumerate} \end{multicols} \textbf{p12} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{33}{44}\times\dfrac{88}{33}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)2\) \item \(\mathmakebox[2.05cm][r]{\dfrac{55}{22}\div\dfrac{25}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{6}{5}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{6}{11}\times2\dfrac{7}{35}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)10\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{11}{16}\times1\dfrac{22}{66}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{3}{55}\times23\dfrac{1}{3}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{11}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{17}{19}\times1\dfrac{23}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{21}{46}\times1\dfrac{27}{42}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{11}{80}\times2\dfrac{8}{44}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{10}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{30}{40}\div\dfrac{45}{5}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{12}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{2}{44}\div1\dfrac{5}{22}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{36}\div\dfrac{9}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{8}{72}\times1\dfrac{10}{25}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{14}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{25}{35}\times\dfrac{7}{75}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{96}{24}\times\dfrac{44}{80}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{5}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{7}{13}\times1\dfrac{3}{49}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{7}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{28}\div\dfrac{16}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{9}{23}\div\dfrac{44}{46}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{17}{90}\times\dfrac{60}{12}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{44}{94}\times1\dfrac{30}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{16}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{14}{56}\times1\dfrac{25}{50}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{15}{8}\) \end{enumerate} \end{multicols} \textbf{p13} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{99}{3}\div\dfrac{33}{8}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)8\) \item \(\mathmakebox[2.05cm][r]{\dfrac{32}{78}\div\dfrac{20}{26}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{7}{42}\times\dfrac{72}{11}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{54}\div1\dfrac{8}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{50}{85}\div2\dfrac{7}{14}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{17}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{2}{4}\div\dfrac{28}{56}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)9\) \item \(\mathmakebox[2.05cm][r]{\dfrac{57}{91}\times\dfrac{35}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{48}\times\dfrac{54}{81}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{2}\) \item \(\mathmakebox[2.05cm][r]{4\dfrac{10}{20}\div1\dfrac{14}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\) \item \(\mathmakebox[2.05cm][r]{\dfrac{72}{90}\div\dfrac{12}{45}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)3\) \item \(\mathmakebox[2.05cm][r]{\dfrac{70}{45}\div\dfrac{80}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{22}{32}\div1\dfrac{14}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{26}{80}\times1\dfrac{9}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{5}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{3}{12}\div\dfrac{42}{84}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{12}{54}\div\dfrac{10}{60}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{27}{51}\div\dfrac{48}{51}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{16}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{3}{6}\div\dfrac{25}{85}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{6}{8}\div\dfrac{54}{72}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)1\) \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{68}\div\dfrac{64}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{17}\) \item \(\mathmakebox[2.05cm][r]{3\dfrac{2}{8}\div\dfrac{19}{38}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \end{enumerate} \end{multicols} \textbf{p14} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{18}\div4\dfrac{2}{4}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{9}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{18}{74}\div\dfrac{23}{74}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)4\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{24}\times1\dfrac{8}{36}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{98}{8}\times\dfrac{38}{98}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{42}\times\dfrac{87}{58}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{12}{7}\) \item \(\mathmakebox[2.05cm][r]{5\dfrac{6}{12}\times\dfrac{63}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{9}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{63}\times\dfrac{14}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{12}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{70}{98}\div4\dfrac{2}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{6}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{95}\times\dfrac{90}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)12\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{2}{78}\div1\dfrac{18}{78}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{9}{4}\div\dfrac{54}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{48}{37}\times\dfrac{74}{16}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{1}{6}\div1\dfrac{6}{15}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{6}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{35}{15}\times\dfrac{51}{7}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)17\) \item \(\mathmakebox[2.05cm][r]{\dfrac{13}{26}\div\dfrac{24}{18}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{60}{21}\div\dfrac{70}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{15}{39}\div4\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{13}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{16}{64}\times1\dfrac{7}{70}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{11}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{88}{99}\times2\dfrac{4}{32}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{17}{9}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{76}{18}\times\dfrac{36}{96}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{19}{12}\) \end{enumerate} \end{multicols} \textbf{p15} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] \item \(\mathmakebox[2.05cm][r]{\dfrac{95}{16}\div\dfrac{95}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{2\dfrac{4}{10}\times2\dfrac{5}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)6\) \item \(\mathmakebox[2.05cm][r]{\dfrac{5}{21}\times9\dfrac{8}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{7}{3}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{16}{64}\times1\dfrac{12}{68}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{17}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{64}{33}\times\dfrac{15}{64}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{40}\div2\dfrac{16}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{8}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{4}{12}\div1\dfrac{8}{40}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{18}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{56}{64}\times\dfrac{26}{28}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{16}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{13}{45}\times\dfrac{21}{91}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{1}{15}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{36}\div\dfrac{2}{6}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{3}{2}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{23}{26}\times\dfrac{10}{23}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{13}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{90}{15}\div\dfrac{66}{77}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)7\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{20}{40}\times\dfrac{8}{90}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{2}{15}\) \item \(\mathmakebox[2.05cm][r]{11\dfrac{4}{8}\div9\dfrac{2}{10}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{5}{4}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{52}{6}\div\dfrac{52}{48}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)8\) \item \(\mathmakebox[2.05cm][r]{\dfrac{36}{12}\div\dfrac{18}{39}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{2}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{36}{45}\times\dfrac{80}{99}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{16}{11}\) \item \(\mathmakebox[2.05cm][r]{\dfrac{18}{57}\div1\dfrac{10}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{4}{19}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{24}{56}\times1\dfrac{6}{20}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{13}{7}\) \item \(\mathmakebox[2.05cm][r]{1\dfrac{3}{93}\div\dfrac{56}{62}}=\underline{\hspace{3cm}\vphantom{\dfrac{1}{2}}}\)\dfrac{8}{7}\) \end{enumerate} \end{multicols} \newpage \textbf{p16} \begin{multicols}{5} \begin{enumerate}[label=\arabic*)] |
λ
.NET NoSQL database for rapid development
|