Run Code  | API  | Code Wall  | Misc  | Feedback  | Login  | Theme  | Privacy  | Patreon 

Linear and Logistic Regression

Language: Layout:
+ ] Show input
Absolute running time: 1.41 sec, cpu time: 1.14 sec, memory peak: 35 Mb, absolute service time: 1,43 sec 
edit mode |  history  | discussion
'data.frame':	150 obs. of  5 variables:
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa
3          4.7         3.2          1.3         0.2  setosa
4          4.6         3.1          1.5         0.2  setosa
5          5.0         3.6          1.4         0.2  setosa
6          5.4         3.9          1.7         0.4  setosa

Call:
lm(formula = Petal.Length ~ Sepal.Length)

Residuals:
     Min       1Q   Median       3Q      Max 
-2.47747 -0.59072 -0.00668  0.60484  2.49512 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -7.10144    0.50666  -14.02   <2e-16 ***
Sepal.Length  1.85843    0.08586   21.65   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8678 on 148 degrees of freedom
Multiple R-squared:   0.76,	Adjusted R-squared:  0.7583 
F-statistic: 468.6 on 1 and 148 DF,  p-value: < 2.2e-16


Call:
lm(formula = Petal.Length ~ ., data = iris)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.78396 -0.15708  0.00193  0.14730  0.65418 

Coefficients:
                  Estimate Std. Error t value Pr(>|t|)    
(Intercept)       -1.11099    0.26987  -4.117 6.45e-05 ***
Sepal.Length       0.60801    0.05024  12.101  < 2e-16 ***
Sepal.Width       -0.18052    0.08036  -2.246   0.0262 *  
Petal.Width        0.60222    0.12144   4.959 1.97e-06 ***
Speciesversicolor  1.46337    0.17345   8.437 3.14e-14 ***
Speciesvirginica   1.97422    0.24480   8.065 2.60e-13 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2627 on 144 degrees of freedom
Multiple R-squared:  0.9786,	Adjusted R-squared:  0.9778 
F-statistic:  1317 on 5 and 144 DF,  p-value: < 2.2e-16


Call:
lm(formula = Petal.Length ~ . - Species, data = iris)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.99333 -0.17656 -0.01004  0.18558  1.06909 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -0.26271    0.29741  -0.883    0.379    
Sepal.Length  0.72914    0.05832  12.502   <2e-16 ***
Sepal.Width  -0.64601    0.06850  -9.431   <2e-16 ***
Petal.Width   1.44679    0.06761  21.399   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.319 on 146 degrees of freedom
Multiple R-squared:  0.968,	Adjusted R-squared:  0.9674 
F-statistic:  1473 on 3 and 146 DF,  p-value: < 2.2e-16


Call:
glm(formula = Binom ~ X1 + X2, family = binomial)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-0.8163  -0.5557  -0.5026  -0.4340   2.3677  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)  
(Intercept) -3.764200   1.815897  -2.073   0.0382 *
X1           0.004945   0.016566   0.298   0.7653  
X2           0.018989   0.016021   1.185   0.2359  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 77.277  on 99  degrees of freedom
Residual deviance: 75.782  on 97  degrees of freedom
AIC: 81.782

Number of Fisher Scoring iterations: 4


    
                
λ
.NET NoSQL database for rapid development