Run Code | API | Code Wall | Misc | Feedback | Login | Theme | Privacy | Patreon |
Linear and Logistic Regression'data.frame': 150 obs. of 5 variables: $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa Call: lm(formula = Petal.Length ~ Sepal.Length) Residuals: Min 1Q Median 3Q Max -2.47747 -0.59072 -0.00668 0.60484 2.49512 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -7.10144 0.50666 -14.02 <2e-16 *** Sepal.Length 1.85843 0.08586 21.65 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.8678 on 148 degrees of freedom Multiple R-squared: 0.76, Adjusted R-squared: 0.7583 F-statistic: 468.6 on 1 and 148 DF, p-value: < 2.2e-16 Call: lm(formula = Petal.Length ~ ., data = iris) Residuals: Min 1Q Median 3Q Max -0.78396 -0.15708 0.00193 0.14730 0.65418 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -1.11099 0.26987 -4.117 6.45e-05 *** Sepal.Length 0.60801 0.05024 12.101 < 2e-16 *** Sepal.Width -0.18052 0.08036 -2.246 0.0262 * Petal.Width 0.60222 0.12144 4.959 1.97e-06 *** Speciesversicolor 1.46337 0.17345 8.437 3.14e-14 *** Speciesvirginica 1.97422 0.24480 8.065 2.60e-13 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.2627 on 144 degrees of freedom Multiple R-squared: 0.9786, Adjusted R-squared: 0.9778 F-statistic: 1317 on 5 and 144 DF, p-value: < 2.2e-16 Call: lm(formula = Petal.Length ~ . - Species, data = iris) Residuals: Min 1Q Median 3Q Max -0.99333 -0.17656 -0.01004 0.18558 1.06909 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.26271 0.29741 -0.883 0.379 Sepal.Length 0.72914 0.05832 12.502 <2e-16 *** Sepal.Width -0.64601 0.06850 -9.431 <2e-16 *** Petal.Width 1.44679 0.06761 21.399 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.319 on 146 degrees of freedom Multiple R-squared: 0.968, Adjusted R-squared: 0.9674 F-statistic: 1473 on 3 and 146 DF, p-value: < 2.2e-16 Call: glm(formula = Binom ~ X1 + X2, family = binomial) Deviance Residuals: Min 1Q Median 3Q Max -0.8163 -0.5557 -0.5026 -0.4340 2.3677 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -3.764200 1.815897 -2.073 0.0382 * X1 0.004945 0.016566 0.298 0.7653 X2 0.018989 0.016021 1.185 0.2359 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 77.277 on 99 degrees of freedom Residual deviance: 75.782 on 97 degrees of freedom AIC: 81.782 Number of Fisher Scoring iterations: 4 |
λ
.NET NoSQL database for rapid development
|