Run Code | API | Code Wall | Misc | Feedback | Login | Theme | Privacy | Patreon |
Random Forest ExampleError(s), warning(s): randomForest 4.6-12 Type rfNews() to see new features/changes/bug fixes. Warning message: In randomForest.default(x, y, mtry = mtryCur, ntree = ntreeTry, : invalid mtry: reset to within valid range 'data.frame': 150 obs. of 5 variables: $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... Sepal.Length Sepal.Width Petal.Length Petal.Width Species 1 5.1 3.5 1.4 0.2 setosa 2 4.9 3.0 1.4 0.2 setosa 3 4.7 3.2 1.3 0.2 setosa 4 4.6 3.1 1.5 0.2 setosa 5 5.0 3.6 1.4 0.2 setosa 6 5.4 3.9 1.7 0.4 setosa setosa versicolor virginica setosa 39 0 0 versicolor 0 34 2 virginica 0 2 29 Call: randomForest(formula = Species ~ ., data = TrainData, ntree = 100, proximity = TRUE) Type of random forest: classification Number of trees: 100 No. of variables tried at each split: 2 OOB estimate of error rate: 3.77% Confusion matrix: setosa versicolor virginica class.error setosa 39 0 0 0.00000000 versicolor 0 34 2 0.05555556 virginica 0 2 29 0.06451613 Test setosa versicolor virginica setosa 11 0 0 versicolor 0 14 4 virginica 0 0 15 mtry = 2 OOB error = 4.67% Searching left ... mtry = 4 OOB error = 4% 0.1428571 0.05 mtry = 8 OOB error = 4% 0 0.05 Searching right ... mtry = 1 OOB error = 5.33% -0.3333333 0.05 mtry OOBError 1.OOB 1 0.05333333 2.OOB 2 0.04666667 4.OOB 4 0.04000000 8.OOB 8 0.04000000 |
λ
.NET NoSQL database for rapid development
|