Run Code
|
API
|
Code Wall
|
Misc
|
Feedback
|
Login
|
Theme
|
Privacy
|
Patreon
Dar
//g++ 7.4.0 const int GW = 10; //grid width const int GL = 10; //grid length const int GENES = 16; //number of genes per robot const int GENELEN=5; //length of each gene const int GN = 0; //empty grid cell const int GB = 9; //battery grid cell const int GDC = 5; //used in gene to match any cell const int GWA = 1; //wall grid cell (out-of-bounds assumed wall) //array of view codes that can go in gene const int VC[4]={GN,GB,GWA,GDC}; const int NVC=4; //directions and the random direction const int UP=1; const int LEFT=2; const int RIGHT=3; const int DOWN=4; const int RANDDIR=5; const int NDC =5; //number of direction codes including the code for random direction const int MOVECODES[5]={UP,LEFT,RIGHT,DOWN,RANDDIR}; const int NR=200; //number of robots in each generation const double PERCBAT = 0.4; //proportion of batteries in grid const int GENERATIONS = 2000; const double MUTRATE=0.05; const int INITEN=5; //initial energy of a robot #include <iostream> class Grid { int g[GW][GL]; //g[x][y] is cell at (x,y) //recursively place a battery than k-1 batteries void randbat(int k){ int x,y; if (k==0) return; else do { x=rand()%GW; y=rand()%GL; } while(g[x][y] != GN); g[x][y]=GB; randbat(k-1); } public: //random Grid with perc rate of batteries Grid(double perc) { for (int y=0; y<GL; y++) for (int x=0; x<GW;x++) g[x][y]=0; int k=(GW*GL)*perc; randbat(k); } //get code of cell at (x,y) so out-of-bounds is a wall int getcode(int x, int y) { if ((x>=GW)||(x<0)||(y>=GL)||(y<0)) return GWA; else return g[x][y]; } //get codes of cells north, west, east, and south of //(x,y) and pack into pre-allocated array of 4 ints void getnwes(int x, int y, int* into) { into[0]=getcode(x,y-1); into[1]=getcode(x-1,y); into[2]=getcode(x+1,y); into[3]=getcode(x,y+1); } //for debugging, print the grid void print() { for (int y=0;y<GL;y++) { for (int x=0;x<GW;x++) { std::cout<<g[x][y]; } std::cout<<std::endl; } } //creature munches //deplete battery there accordingly if any //return energy munched int munch(int x, int y) { if (g[x][y]==GB) {g[x][y]=GN; return 1;} else return 0; } int cango(int x, int y) { return (getcode(x,y)!=GWA); } //for debugging, print codes for sensor at (x,y) void printcodes(int x, int y) { int a[4]; getnwes(x,y,a); for(int i=0;i<4;i++) std::cout<<a[i]; } //end class }; //robot class Rb { int genes[GENES][GENELEN]; int energy; int x,y; int movesmade; void randplace() { x=rand()%GW; y=rand()%GL; } void randgene(int* g) { //first 4 codes are one of nothing,wall,battery,or don't care for (int i=0;i<4;i++) { g[i]=VC[rand()%NVC]; } //5th code is a (non-zero) direction code g[4]=MOVECODES[rand()%NDC]; } public: Rb() { for (int g=0;g<GENES;g++) { randgene(genes[g]); } randplace(); movesmade=0; energy=INITEN; } int activategene(int*view,int*gene){ for (int i=0;i<4;i++) { if (view[i]!=gene[i]&&gene[i]!=GDC) return 0; } return gene[GENELEN-1]; } //look up a move given a view //if no gene matches, return last gene's move int lookup(int* view) { int move; for (int i=0;i<GENELEN;i++) { move=activategene(view, genes[i]); if (move!=0) return move; } //if there are gene activations assume the last gene is activated return genes[GENES-1][GENELEN-1]; } void reset() { randplace(); movesmade=0; energy=INITEN; } void go(Grid*gr) { if (energy<0) return; int view[4]; int move; int x2, y2; gr->getnwes(x,y,view); move=lookup(view); //if move represents a random move then //the move becomes a random move if (move==RANDDIR) { int ds[4]={UP,LEFT,RIGHT,DOWN}; move=ds[rand()%4]; } y2=y;x2=x; switch(move) { case(UP): y2--;break; case(LEFT): x2--; break; case(RIGHT): x2++; break; case(DOWN): y2++; break; } //if can go then go if (gr->cango(x2,y2)) {x=x2;y=y2;} //and always increment moves made movesmade++; //return energy energy+=gr->munch(x,y); energy--; go(gr); } void mutate() { int z=rand()%GENES; int code=rand()%GENELEN; const int* source=VC; //array to copy from int l=NVC; //length of array to copy from if (code==GENELEN-1) { source=MOVECODES; l=NDC; } genes[z][code]=source[rand()%l]; } void printgenes() { for (int g=0; g<GENES;g++) { for (int i=0; i<GENELEN; i++) { std::cout<<genes[g][i]<<" "; } std::cout<<std::endl; } } void printstats() { std::cout<<"x: "<<x<<" y: "<<y<<" E: "<<energy+1<<" Score: "<<movesmade<<std::endl; } int moves() {return movesmade;} Rb mate(Rb pa) { Rb baby; int i=0; Rb *source=this; for (i=0;i<GENES;i++) { for(int i2=0;i2<GENELEN;i2++) { if(i>=GENES/2) source=&pa; baby.genes[i][i2]=source->genes[i][i2]; } } return baby; } //end class }; class Breeder { Rb rs[NR]; //the 200 robots double avg[GENERATIONS]; Grid newgrid() { Grid g(PERCBAT); return g; } void runrs(int gennum) { if (gennum>=GENERATIONS) return; double tot=0.0; for (int i=0; i<NR; i++) { Grid g=newgrid(); rs[i].reset(); rs[i].go(&g); tot+=rs[i].moves(); } avg[gennum]=tot/(double)NR; sort(); breed(); runrs(gennum+1); } void sort() { Rb temp; for (int i=0;i<NR-1;i++) { for (int i2=i+1;i2<NR;i2++) { if (rs[i].moves()<rs[i2].moves()) { temp=rs[i]; rs[i]=rs[i2]; rs[i2]=temp; } } } } void breed() { //do the gene combining perfectly for(int i=0;i<NR/2;i=i+2) { rs[i+NR/2]=rs[i].mate(rs[i+1]); rs[i+NR/2+1]=rs[i+1].mate(rs[i]); } //make some mutants Rb* m[(int)(NR*MUTRATE)]; //array of pointer to mutants for (int i=0; i<NR*MUTRATE;i++) { int in; int n; do { in=0; n=rand()%NR; m[i]=&rs[n]; for(int i2=0;i2<i-1;i2++) if (m[i2]==m[i]) in=1; } while (in); m[i]->mutate(); } } public: Breeder() { runrs(0); } void print() { for (int i=0;i<GENERATIONS;i++) { std::cout<<"Generation "<<i<<" average "avg[i]<<std::endl; } rs[0].printgenes(); std::cout<<rs[0].moves()<<std::endl; } }; int main() { srand(time(NULL)); Breeder b; }
run
|
edit
|
history
|
help
0
Atul
lab17feb22x4B.cpp
segmented sieve
Handling new types without using RTTI
queue-with-fixed-size
ncr
star print1
TypeSizeTest
PATRA_Class_test
test