Run Code
|
API
|
Code Wall
|
Misc
|
Feedback
|
Login
|
Theme
|
Privacy
|
Patreon
Bimodal CLT
ppois(3,lambda=1.5,lower=FALSE) 1-ppois(3,1) 1-pbinom(0,12,1-ppois(3,1)) p <- 1 / 2 sigma <- 0.1 n <- 10 cutoff <- 1e-3 dfoo <- function(x) { (1 - p) * dnorm(x, 0, sigma) + p * dnorm(x, 1, sigma) } pfoo <- function(x) { (1 - p) * pnorm(x, 0, sigma) + p * pnorm(x, 1, sigma) } qfoo <- function(x) { lower <- 0 upper <- 1 k <- 1 repeat { if (pfoo(lower) < x) break lower <- lower - k k <- k + 1 } k <- 1 repeat { if (pfoo(upper) > x) break upper <- upper + k k <- k + 1 } phred <- function(y) pfoo(y) - x out <- uniroot(phred, lower = lower, upper = upper) out$root } from <- qfoo(cutoff / 2) to <- qfoo(1 - cutoff / 2) curve(dfoo(x), from = from, to = to, ylab = "f(x)", xlab = "x", main = "PDF of individual terms") xx <- seq(0, n) pp <- dbinom(xx, n, p) dfoo <- function(x) { yy <- rep(NA, length(x)) for (i in seq(along = x)) yy[i] <- sum(pp * dnorm(x[i], xx, sqrt(n) * sigma)) return(yy) } pfoo <- function(x) sum(pp * pnorm(x, xx, sqrt(n) * sigma)) from <- qfoo(cutoff / 2) to <- qfoo(1 - cutoff / 2) curve(dfoo(x), from = from, to = to, ylab = "f(x)", xlab = "x", n = 5101, main = "PDF of sum (black) and normal approx. (red)") curve(dnorm(x, mean = n * p, sd = sqrt(n * p * (1 - p) + n * sigma^2)), col = "red", add = TRUE)
run
|
edit
|
history
|
help
0
Monroe Week 9 Homework
ExDecaiEulerMin24-02-21
Kruskal Wallis test
Chapter 5: Sample from N(0,1)
ProgramasR
31-08-2020-Exemplo Ajuste
Gab1A(resumido)
R1
AjusteLinearizado-11-01-21-pacotematriz
14-09-2020GRamLD