Run Code
|
API
|
Code Wall
|
Misc
|
Feedback
|
Login
|
Theme
|
Privacy
|
Patreon
Minimum Vertices to Traverse Directed Graph
/*29 Minimum Vertices to Traverse Directed Graph Given a directed grapjh, represented in a two dimension array, output a list of points that can be used to travese every points with the least number of visited vertices. */ #include <vector> #include <iostream> #include <set> #include <map> #include <queue> using namespace std; class Solution { map<int, set<int>> m; map<int, set<int>> degree; // in-degree public: vector<int> minVertices_DFS(vector<vector<int>>& edges, int n) { m.clear(); for(auto e: edges) { int x = e[0], y = e[1]; m[x].insert(y); degree[y].insert(x); } vector<int> res; set<int> visited; for(int i=0; i<n; i++) { // 1st to visit in-degree == 0 if(degree.count(i)==0 && visited.count(i) == 0) { res.push_back(i); DFS(i, visited); } } for(int i=0; i<n; i++) { // 2nd to visit one in a loop, still not visited if(visited.count(i)==0) { res.push_back(i); DFS(i, visited); } } return res; } void DFS(int i, set<int>& visited){ if(visited.count(i)) return; visited.insert(i); // visit i for(auto x: m[i]) // visit i's neighbors DFS(x, visited); } vector<int> BFS(vector<vector<int>>& edges, int n){ // init graph m.clear(); for(auto e: edges){ int x = e[0], y = e[1]; m[x].insert(y); degree[y].insert(x); } set<int> q; vector<int> res; set<int> visited; for(int i=0; i<n; i++){ if(degree.count(i) == 0){ res.push_back(i); q.insert(i); } } while(q.size() || degree.size()){ if(q.size()==0 && degree.size()){ // there is a cycle, has to handle this first int i = degree.begin()->first; // can use any one res.push_back(i); // easy to forget q.insert(i); } int x = *q.begin(); q.erase(x); if(visited.count(x)) continue; // already visited visited.insert(x); degree.erase(x); for(int y: m[x]){ // visit x's neighbors q.insert(y); } } return res; } void print(vector<int>& res) { for(auto x: res) { cout << x << " " ; } cout << endl; } }; int main() { vector<vector<int>> edges = {{0,1}, {1,0}, {2,3}}; int n = 4; // [2,0] edges = {{2,9},{3,3},{3,5},{3,7},{4,8},{5,8},{6,6},{7,4},{8,7},{9,3},{9,6}}; n = 10; // expected result [0,1,2] edges = {{0,1},{1,2},{2,3},{3,4},{4,0},{5,6},{6,7},{7,8},{8,9},{9,5}}; n = 10; // expected [5,0] edges = {{0,1},{1,2},{2,3},{3,4},{4,0},{7,6},{6,8},{8,6}}; n = 10; // expected [5,7,9,0] Solution s; vector<int> res = s.minVertices(edges, n); s.print(res); Solution s2; vector<int> res2 = s2.BFS(edges, n); s2.print(res2); return 0; }
run
|
edit
|
history
|
help
0
StackQuiz
Gauss v1.1
barai_1
work
primes
Newspaper
DFS
compile-time check of existness of method of a class
project
CutRod(BottomUp)