Run Code
|
API
|
Code Wall
|
Misc
|
Feedback
|
Login
|
Theme
|
Privacy
|
Patreon
Adams-Bashforth Method for four step
PROGRAM Q2a_Adams_Moulton_Method IMPLICIT NONE INTEGER,PARAMETER::n=10 INTEGER::i,j REAL::a1,a2,h,f,y,k1,k2,k3,k4,y4(n+1),t(n+1) a1=0.0 a2=2.0 t(1)=a1 h=(a2-a1)/n DO i=1,n t(i)=a1+(i-1)*h END DO y4(1)=0.5 DO i=1,3 k1=h*f(t(i),y4(i)) k2=h*f(t(i)+0.5*h,y4(i)+0.5*k1) k3=h*f(t(i)+0.5*h,y4(i)+0.5*k2) k4=h*f(t(i),y4(i)+k3) y4(i+1)=y4(i)+(k1+2*k2+2*k3+k4)/6.0 END DO DO i=4,n y4(i+1)=(y4(i)+(h/24)*(55*f(t(i),y4(i))-59*f(t(i-1),y4(i-1))+37*f(t(i-2),y4(i-2))-9*f(t(i-3),y4(i-3)))) END DO DO i=1,n+1 WRITE(*,*)i,y4(i) END DO END PROGRAM REAL FUNCTION f(t,y) IMPLICIT NONE REAL::t,y f=y-t**2+1 END FUNCTION
run
|
edit
|
history
|
help
0
NEWTON FORWARD DIFFERENT INTERPOLATION
Exercise
problem_4
2
s
Exercicio 1
A_04 TRAPEZOIDAL RULE (3(II))
Q1a
A_04 TRAPEZOIDAL RULE (3(I))
hello world