Run Code
|
API
|
Code Wall
|
Misc
|
Feedback
|
Login
|
Theme
|
Privacy
|
Patreon
Ejercicios R
a<-c(3,4,5) #distribucion binomial dbinom(5,10,0.8) print(a) dpois(8,7.1) pnorm(12,10,8) vector<-c(rpois(1000,8.2)) vector hist(vector) vector<-c(rgeom(100000,.4)) vector hist(vector, col='green',main='Datos',xlab = 'Acumulado', ylab = 'Valores',xlim = c(0,5)) x<-seq(165,175, by=0.5) dnorm(x,170,12) curve(dnorm(x,170,12),xlim = c(130,210), col='red', lwd=5,xlab = 'x',ylab = 'f(x)',main='Distribucion') a<-pnorm(150+1*12,150,12)-pnorm(150-1*12,150,12) b<-pnorm(150+2*12,150,12)-pnorm(150-2*12,150,12) c<-pnorm(150+3*12,150,12)-pnorm(150-3*12,150,12) d<-pnorm(150+4*12,150,12)-pnorm(150-4*12,150,12) a b c d a<-pnorm(12,10,8) #Ejercicio 1 P( m-G <= x <= m+G ) = 99% pnorm(150+3*12,150,12)-pnorm(150-3*12,150,12) #Ejercicio 2 Crear un vector de una binomial 10000 p=1/2 vector<-c(rgeom(10000,.5)) vector #Ejercicio 3 Graficar una exponencial con parametro lambda=15 x<-seq(165,175, by=0.5) curve(dexp(x,15),xlim = c(0,0.5), col='red', lwd=5,xlab = 'x',ylab = 'f(x)',main='Distribucion exponencial') #Graficar una normal N(5000,2500) x<-seq(165,175, by=0.5) curve(dnorm(x,5000,50),xlim = c(4800,5200), col='green', lwd=5,xlab = 'x',ylab = 'f(x)',main='Distribucion normal')
run
|
edit
|
history
|
help
0
Linear and Log linear Model
2
Why is height normal
Call option formula for Geometric Laplace distributed stock
First program
Hiring Discrimination
Teste de sheffé
iron-anova-dbc
data frame
Ex21-01-21