Run Code
|
API
|
Code Wall
|
Misc
|
Feedback
|
Login
|
Theme
|
Privacy
|
Patreon
10=08-2020Newton
# Minimo para resolver equação f(x)=0. f<-function(u){ # Definição de função f(u), para resolver a equação f(u)=0 x=u[1];y=u[2] c( exp(cos(x) - 2*y) + x*y, sin(x)*cos(y) + x/y) } g<-function(u){ t(f(u)) %*% f(u)/2 } Jf<-function(u){ x=u[1];y=u[2] p=matrix(0,2,2) df1=c( exp(cos(x) - 2*y)*(-sin(x))+y, exp(cos(x) - 2*y)*(-2)+x) df2=c( cos(x)*cos(y) + 1/y , -sin(x)*sin(y) -x/(y^2) ) p[1,]=df1 p[2,]=df2 p } gradg<-function(u){ p=t(Jf(u))%*%f(u) t(p) } print("f e Gradiente g") f(c(1,2)) gradg(c(1,2)) # Método de Euler alpha=9.8 ZeroEuler<-function(u0,t,n){ u=matrix(0,2,n+1) u[,1]=u0 tj=t/n for (i in 1:n){ h=solve( Jf(u[,i]),-tj*alpha*f(u[,i])) # Resolve o sistema linear Jf(u)h=-tj alpha f(u) u[,i+1]=u[,i]+h} u } # Teste print("Resolução equação ") u0=c(1,2); t=1; n = 10 u=ZeroEuler(u0,t,n) ; u [,n+1] # Aproximadamente u(100) f(u[,n+1]) g(u[,n+1]) x=u[1,]; y=u[2,] plot(x,y)
run
|
edit
|
history
|
help
0
Linear and Logistic Regression
1
Gab1B
Gamma
Mathematical operations
First program
29-01-21TestesAjuste
28-09-2020Int-poli-inter-FuncaoComportadabem
Bootstrap for Gaussian Distribution
cool ggplot